Molecular Mechanism for Endothelin-1–Induced Stress-Fiber Formation: Analysis of G Proteins Using a Mutant Endothelin_A Receptor

YOSHIFUMI KAWANABE, YASUO OKAMOTO, KAZUHIKO NOZAKI, NOBUO HASHIMOTO, SOICHI MIWA, and TOMOH MASAKI.

Departments of Neurosurgery (Y.K., K.N., N.H.) and Pharmacology (Y.K., Y.O., S.M., T.M.), Kyoto University Faculty of Medicine, Kyoto, Japan Received July 31, 2001; accepted October 11, 2001

This paper is available online at http://molpharm.aspetjournals.org

ABSTRACT

The purposes of the present study were to clarify the significance of the palmitoylation site and the cytoplasmic tail of the endothelin receptor (ETAR) in coupling with G proteins and to determine the subtypes of G protein that are involved in actin stress-fiber formation in Chinese hamster ovary cells that stably express ET_AR (CHO-ET_AR). For these purposes, we constructed CHO cells stably expressing an unpalmitoy-lated (Cys 383 Cys $^{385-388}$ \rightarrow Ser $^{385-388}$) ET_AR (CHO-SerETAR) and a series of truncated ETARs that lacked the cytoplasmic tail downstream of either of the five cysteine residues (Cys³⁸³Cys^{385–388}). All truncated ET_ARs but not SerET_△R failed to stimulate adenylyl cyclase. With the truncated ET_ARs holding Cys³⁸⁵, ET-1 stimulated formation of inositol phosphates, but such stimulation failed with truncated ET_ARs lacking Cys³⁸⁵. With wild-type ET_ARs, ET-1 induced actin stress-fiber formation, which was inhibited by (R)-(+)trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxam-

ide (Y-27632), a Rho-associated coiled-coil-forming protein kinase (ROCK) inhibitor. The formation was unaffected by $1-(6-\{[17\beta-3-methoxyestra-1,3.5(10)-trien-17-yl]$ amino}hexyl)-1*H*pyrrole-2,5-dione (U73122), a phospholipase C (PLC) inhibitor, or dominant negative mutants of G₁₂ (G₁₂G228A) or G₁₃ (G₁₃G225A), whereas it was inhibited by U73122 in combination with G₁₂G228A but not G₁₃G225A. Dibutyryl cAMP alone did not induce stress-fiber formation. With unpalmitoylated or truncated ETARs, the formation was sensitive to G₁₂G228A or U73122, respectively. These results indicate that 1) Cys^{385} of ET_{A}R is critical for coupling with G_{q} , 2) the cytoplasmic tail downstream of the palmitoylation sites of ET_AR is essential for coupling with G_s and G₁₂, and 3) the signal for ET-1-induced stress-fiber formation is transmitted through the G_a/PLC- and G₁₂-dependent pathway to the Rho/ROCK system.

Endothelin-1 (ET-1) has a wide variety of biological effects on various tissues and cell types (Yanagisawa et al., 1988; Masaki, 1993) that are mediated by specific heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor subtypes, the endothelin_A receptor (ET_AR) and endothelin_B receptor (ET_BR) (Arai et al., 1990; Sakurai et al., 1990). The two receptors activate multiple subtypes of G proteins and can be distinguished by their selective coupling

This work was supported by a grant-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan; by Special Coordination Funds for Science and Technology from the Science and Technology Agency; by a Research Grant for Cardiovascular Disease (11C-1) from the Ministry of Health and Welfare; and by a grant from the Smoking Research Foundation, Japan.

with specific G protein subtypes. When expressed in Chinese hamster ovary (CHO) cells, $ET_{\rm A}R$ couples with members of the $G_{\rm q}$ and $G_{\rm s}$ families and stimulates phospholipase C (PLC) and adenylyl cyclase. $ET_{\rm B}R$ couples with members of the $G_{\rm q}$ and $G_{\rm i}$ families, stimulates PLC, and inhibits adenylyl cyclase (Aramori and Nakanishi, 1992; Takagi et al., 1995).

 $\mathrm{ET_AR}$ and $\mathrm{ET_BR}$ were shown to be palmitoylated at a cluster of cysteine residues located in the cytoplasmic tail (Horstmeyer et al., 1996; Okamoto et al., 1997). The functional role of palmitoylation and the cytoplasmic tail domain downstream of the palmitoylation site in coupling with G proteins has been studied for $\mathrm{ET_AR}$ and $\mathrm{ET_BR}$ (Horstmeyer et al., 1996; Okamoto et al., 1997). We found that in the case

ABBREVIATIONS: ET-1, endothelin-1; ET_AR, endothelin_A receptor; ET_BR, endothelin_B receptor; CHO, Chinese hamster ovary; PLC, phospholipase C; ROCK, Rho-associated coiled-coil-forming protein kinase; CHO-ET_AR, Chinese hamster ovary cells that stably express human endothelin_A receptor; CHO-ET_ARΔCys x, Chinese hamster ovary cells that express human endothelin_A receptor truncated at the carboxyl-terminal downstream of Cys x (in which x is 382, 383, 385, or 388); CHO-SerET_AR, Chinese hamster ovary cells that express an unpalmitoylated (Cys³⁸³Cys³⁸⁵⁻³⁸⁸ \rightarrow Ser³⁸⁵⁻³⁸⁸) human endothelin_A receptor; G₁₂G228A, dominant negative mutant of G₁₂; G₁₃G225A, dominant negative mutant of G₁₃; FCS, fetal calf serum; IP, inositol phosphate; PBS, phosphate-buffered saline; PBS-Tx, phosphate-buffered saline containing 0.1% Triton X-100; Y-27632, (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide; U73122, 1-(6-{[17β-3-methoxyestra-1,3.5(10)-trien-17-yl] amino}hexyl)-1H-pyrrole-2,5-dione.

of ET_BR, palmitoylation is necessary for coupling with both G_a and G_i, whereas the cytoplasmic tail downstream of the palmitoylation sites is also required for coupling with G_i (Okamoto et al., 1997). On the other hand, with ETAR, palmitoylation is reported to be essential for coupling with G_a but not with G_s, based solely on an experiment using an unpalmitoylated mutant ETAR (Horstmeyer et al., 1996). Thus, which domain of ETAR is necessary for coupling with G_s and which of the potential palmitoylation sites is necessary for coupling with G_{α} remains unknown. In this context, we first attempted to determine the structural basis essential for coupling ET_AR with $G_{\rm q}$ and $G_{\rm s}$ by focusing on several potential palmitoylation sites and the cytoplasmic tail downstream of the palmitovlation sites. For this purpose, we constructed CHO cells that stably expressed an unpalmitoylated mutant (Cys 383 Cys $^{385-388} \rightarrow Ser^{383}Ser^{385-388})$ ET_AR (CHO-SerETAR) and a series of truncated ETARs that lacked the cytoplasmic tail downstream of any of the five cysteine residues (Cys³⁸³Cys^{385–388}).

ET receptors were demonstrated to couple with the G_{12} subfamily, consisting of G_{12} and G_{13} , in NIH 3T3 cells (Mao et al., 1998). The G_{12} subfamily has been shown to mediate important signaling pathways such as for Rho/Rho-associated coiled-coil-forming protein kinase (ROCK)-dependent formation of actin stress fibers (Buhl et al., 1995) and vascular smooth muscle cell contraction (Gohla et al., 2000). These reports suggest that the G_{12} subfamily may play important roles in several ET-1-induced vascular disorders, such as stroke or vasospasm. Thus, the control of G₁₂ subfamily activation may become a new treatment strategy for these conditions. Recently, it was shown that activation of ETAR induces actin stress-fiber formation via G_{12} but not G_{13} (Gohla et al., 1999). However, the domains in the ET_AR that are necessary for coupling with G₁₂ have not yet been elucidated. The second purpose of the present study is to reveal a functional coupling between ET_AR and G₁₂/G₁₃ in CHO-ET_AR and the functional roles of the palmitoylation site and cytoplasmic tail downstream of the palmitoylation site of ET_AR in coupling of the receptor with G₁₂ using mutated ETARs. Furthermore, the conclusion with regard to coupling of ETAR with G12 is based on an experiment in which actin stress-fiber formation is lost after expression of a dominant negative mutant of G₁₂ in fibroblast cell lines derived from G_o/G₁₁-double deficient mice (Gohla et al., 1999). It remains unknown whether ET-1-induced actin stress-fiber formation requires other G proteins such as G_q and G_s in addition to G₁₂. We have attempted to address this point using CHO cells expressing mutated ETARs. Previous reports demonstrated that CHO cells express both G₁₂ and G₁₃ (van de Westerlo et al., 1995; Malek et al., 2001).

Materials and Methods

Mutagenesis. The entire coding sequence of human ET_AR was subcloned into pGEM-T. The truncated ET_AR cDNAs shown in Fig. 1 were created by polymerase chain reaction. The sequence of the oligonucleotide 5'-primers for all mutants was 5'-CTCGAGGTCGACGGTATCGATAAGCTTGATAT-3'. The sequences of the oligonucleotide 3'-primers for $\Delta 388$, $\Delta 385$, $\Delta 383$, and $\Delta 382$ were 5'-GCGGCCGCTCAACAGCAGCAGCAGCAGAGGCAT-3', 5'-GCGGCCGCTCA-GAGGCATGACTGGAAA-3', 5'-GCGGCCGCTCAGAGGCATGACTGGAAACAA-3', and 5'-GCGGCCGCTCATGACTGGAAACAATTTTTA-3', respectively. Each 3'-primer

contained one nucleotide substitution to introduce a termination stop codon with a NotI restriction site, whereas the 5'-primer contained an XhoI restriction site. Fragments were amplified by the 5'-primer and each 3'-primer from ET_AR cDNA as a template. The polymerase chain reaction amplification profiles were denaturation at 94°C for 1 min, primer annealing at 55°C for 30 s, and extension at 72°C for 1 min for 30 cycles. The mutations were confirmed by sequencing, and cDNA fragments were subcloned into a XhoI/NotI restriction site of a mammalian expression vector pME18Sf predigested by XhoI and NotI.

The entire coding sequence of human ET_AR into pME18sf served as a template for unpalmitoylated mutagenesis using a Quick-Change site-directed mutagenesis kit (Stratagene, La Jolla, CA). The following primers were used to substitute the cysteine residues in the cytoplasmic tail with serine residues: 5'-AATTGTTTCCAGT-CATCCTCCTCCTCCTCTTACCAGTCCAAA-3' and 5'-TTTG-GACTGGTAAGAGGAGGAGGAGGAGGATGACTGGAAACAATT-3' to mutate $Cys^{383}Cys^{385-388}$. The mutations were confirmed by sequencing.

Wild-type G_{12} and G_{13} in pcDNA3(+) were kindly provided by Dr. Manabu Negishi (Kyoto University, Japan). $G_{12}G228A$ and $G_{13}G225A$, which were shown to be the dominant negative types (Gohla et al., 1999), were generated by a QuickChange site-directed mutagenesis kit (Stratagene). Mutations were verified by sequencing.

Cell Culture and Transfection. CHO cells were maintained in Ham's F-12 medium supplemented with 10% fetal calf serum (FCS) under a humidified 5% ${\rm CO}_2/95\%$ air atmosphere. For stable expression, CHO cells were transfected with expression plasmids together with pSVbsr using LipofectAMINE (Invitrogen, Tokyo, Japan). Cell populations expressing the bsr gene product were selected in Ham's F-12 supplemented with 10% FCS containing blasticidine (10 μ g/ml), and clonal cell lines were isolated by colony lifting and maintained in the same medium.

¹²⁵I-ET-1 Binding Assay. Assays using intact cells or membrane preparations were performed exactly as described previously (Sakamoto et al., 1993).

Cyclic AMP Formation and Inositol Phosphates Formation. Cyclic AMP formation and inositol phosphate (IP) formation were determined as described previously (Okamoto et al., 1997).

Microinjection. Microinjection was performed as described previously (Okazawa et al., 1998). Briefly, cells were seeded onto glass coverslips coated with fibronectin (Iwaki Glass, Chiba, Japan), which were marked with a cross to facilitate the localization of injected cells and incubated overnight in Ham's F-12 medium containing 1% FCS. Plasmids (100 ng/ μ l) encoding for $G_{12}G228A$ and $G_{13}G225A$ were microinjected into cell nuclei. As a control, expression plasmids with-

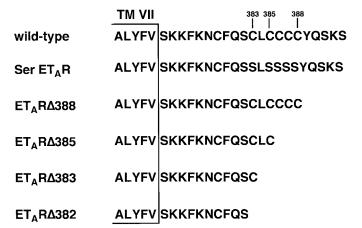


Fig. 1. Nomenclature of human ET_AR mutants. Aligned are the amino acid sequences of the carboxyl-terminal tail of the wild-type human ET_AR , unpalmitoylated mutant and four deletional mutants. The amino acid numbers of the three cysteine residues are indicated. TM VII, seventh transmembrane domain.

out inserts were microinjected in an adjacent field on the same coverslip. Microinjection was performed using a manual microinjection system (Eppendorf–5 Prime, Inc., Hamburg, Germany) equipped with an Axiovert 100 inverted microscope (Carl-Zeiss GmbH, Frankfurt, Germany).

Stress-Fiber Formation. After incubation of cells with serumfree Ham's F-12 medium for 24 h, ET-1 was added at 37°C for 5 min. Cells were washed three times with phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde in PBS at room temperature for 15 min. After being washed five times with PBS containing 0.1% Triton X-100 (PBS-Tx), the cells were incubated with fluorescein rhodamine-phalloidin (Molecular Probes, Eugene, OR) in PBS-Tx (1:200) at room temperature for 10 min. After being washed five times with PBS-Tx, the labeled cells were mounted on glass slides and examined with an MRC 1024 laser-scanning confocal microscope (Bio-Rad, Hercules, CA) equipped with an Axiovert 135 M inverted microscope (Carl-Zeiss GmbH).

Images were converted to PICT files in Adobe Photoshop (Adobe Systems Inc., San Jose, CA) and analyzed using NIH Image software (http://rsb.info.nih.gov/nih-image/) by quantifying the average pixel intensities as described previously (Barnett et al., 1997).

Drugs. Y-27632 was kindly provided by Welfide Corporation (Osaka, Japan). Chemicals were obtained from the following sources: ET-1 from the Peptide Institute (Osaka, Japan), ¹²⁵I-ET-1 and myo-[³H]inositol from Amersham Biosciences UK, Ltd. (Little Chalfont, Buckinghamshire, UK), rhodamine-phalloidin from Molecular Probes, U73122 from Funakoshi (Tokyo, Japan), and dibutyryl cAMP from Sigma (St. Louis, MO). All other chemicals were of reagent grade and were obtained commercially.

Statistical Analysis. All results were expressed as mean \pm S.E.M. The data were subjected to a two-way analysis of variance, and when a significant F value was encountered, the Newman-Keuls multiple range test was used to test for significant differences between treatment groups. A probability level of P < 0.05 was considered statistically significant.

Results

Stable Expression of Truncated or Unpalmitoylated Mutant ET_ARs in CHO Cells. By cotransfecting CHO cells with each expression plasmid and pSVbsr^r and then selecting for resistance against blasticidine, we obtained more than five individual clonal cell lines that stably expressed each receptor construct. In CHO cells expressing truncated mutant ET_AR, 125 I-ET-1 binding assays on membrane preparations from various clones gave $K_{\rm d}$ values of 30 to 120 pM and $B_{\rm max}$ values of 0.7 to 1.4 pmol/mg of protein. On the other hand, in CHO-SerET_AR, 125 I-ET-1 binding assays on membrane preparations from various clones gave $K_{\rm d}$ values of 50 to 140 pM and $B_{\rm max}$ values of 0.8 to 1.7 pmol/mg of protein. Cell clones showing similar levels of receptor densities were used in the subsequent study. The $K_{\rm d}$ and $B_{\rm max}$ values for the receptors expressed on each clone adopted are listed in Table 1.

Formation of IPs and cAMP in CHO Cells Expressing Truncated or Unpalmitoylated Mutant ET_ARs after Stimulation with ET-1. To reveal the functional significance of the palmitoylation site and the cytoplasmic tail downstream of the palmitoylation site in coupling with G_q and G_s , we tested the abilities of the mutant receptors to stimulate accumulation of [3H]IPs and cAMP, respectively. [3H]Palmitic acid was metabolically incorporated into CHO-ET_AR $\Delta 388$ and CHO-ET_AR $\Delta 385$ but not into CHO-ET_AR $\Delta 383$, CHO-ET_AR $\Delta 382$, or CHO-SerET_AR (data not shown).

In CHO-ET_AR, ET-1 caused a concentration-dependent stimulation of [3 H]IP accumulation with an EC₅₀ value of 2.7 \pm 0.3 nM, and the maximal effect of a \sim 15-fold increase was obtained at concentrations \geq 10 nM (Fig. 2A). In CHO-ET_AR Δ 388 or CHO-ET_AR Δ 385, ET-1 caused a concentration-dependent stimulation of [3 H]IP accumulation with an EC₅₀ value and a maximum increase that were comparable with those of CHO-ET_AR (Fig. 2A). In contrast, ET-1 failed to stimulate [3 H]IP accumulation in CHO-ET_AR Δ 383, CHO-ET_AR Δ 382, or CHO-SerET_AR (Fig. 2A).

In CHO-ET_AR, ET-1 stimulated cAMP formation with an EC₅₀ of 2.7 ± 0.3 nM, and a maximal effect of an ~8-fold increase was obtained at concentrations ≥ 10 nM (Fig. 2B). ET-1 also stimulated cAMP accumulation in a concentration-dependent manner in CHO-SerET_AR (Fig. 2B). The EC₅₀ value and the maximal effect of cAMP accumulation in CHO-SerET_AR were similar to those in CHO-ET_AR (Fig. 2B). In contrast, ET-1 failed to stimulate cAMP formation in CHO cells expressing all truncated ET_AR (Fig. 2B).

ET-1–Induced Actin Stress-Fiber Formation in CHO-ET_AR. We attempted to determine the structural basis for coupling of ET_AR with G_{12}/G_{13} and subtypes of G proteins involved in ET-1–induced stress-fiber formation. For these purposes, we examined the effects of inhibition of either one of the G protein-mediated signaling cascades by blockers and dominant negative mutants of G_{12} or G_{13} ($G_{12}G_{228A}$ or $G_{13}G_{225A}$, respectively) on ET-1–induced actin stress-fiber formation in CHO-ET_AR $_{2385}$, CHO-SerET_AR, and CHO-ET_AR. Subsequently, we deduced the domains of ET_AR that were critical for coupling with G_{12} , based on the structure of the mutant ET_ARs that did not have the ability to couple to G_{10} .

As reported for NIH 3T3 cells and fibroblasts (Mao et al., 1998; Gohla et al., 1999), ET-1 induced actin stress-fiber formation in CHO-ET_AR (Fig. 3B). In contrast, ET-1 failed to induce stress-fiber formation in CHO-ET_AR that had been preincubated with 10 μ M Y-27632, a selective ROCK inhibitor (Fig. 3C). Stress-fiber formation was not affected by pretreatment with 5 μ M U73122, a PLC inhibitor, or microinjection of G₁₂G228A or G₁₃G225A in CHO-ET_AR (Fig. 3F). This concentration (5 μ M) of U73122 abolished ET-1-induced IP accumulation in CHO-ET_AR (data not shown). Notably, when the cells were subjected to microinjection of G₁₂G228A followed by pretreatment with U73122, ET-1 failed to induce stress-fiber formation (Fig. 3D). In contrast, microinjection of G₁₃G225A in combination with pretreat-

TABLE 1 Densities and affinities of wild-type and mutant $\mathrm{ET_A}$ receptors expressed on CHO cells

Clonal cell lines expressing each receptor construct were isolated as described under *Materials and Methods*. Binding parameters were determined by saturation isotherms of a $^{125}\text{I-ET-1}$ binding assay using membrane preparations. These clones were selected because of similarities in receptor density. Deletions of amino acids in mutant receptors are shown in Fig. 1. Values are means \pm S.E.M. from at least three independent experiments each done in duplicate.

Receptor Construct	$K_{ m d}$	$B_{ m max}$
	pM	pmol/mg of protein
Wild-type	52.8 ± 2.4	1.08 ± 0.16
$ET_AR\Delta 388$	65.3 ± 8.2	0.96 ± 0.05
$ET_AR\Delta 385$	49.5 ± 4.3	1.12 ± 0.08
$ET_{A}R\Delta 383$	39.6 ± 3.5	0.88 ± 0.10
$ET_AR\Delta 382$	56.8 ± 6.3	0.97 ± 0.12
$SerET_AR$	70.2 ± 4.4	1.04 ± 0.14

ment by U73122 had no effect on ET-1-induced stress-fiber formation (Fig. 3F).

To clarify the role of G_s in actin stress-fiber formation, we examined the effect of dibutyryl cAMP in quiescent CHO-ET_AR. Treatment with dibutyryl cAMP up to 10 μ M alone failed to induce actin stress-fiber formation in CHO-ET_AR (Fig. 3E).

ET-1-Induced Actin Stress-Fiber Formation in CHO-SerET_AR and CHO-ET_ARΔ385. ET-1 induced stress-fiber formation in CHO-SerET_AR, in which coupling of the receptor with G_s but not G_q was retained (Fig. 4B). Like CHO-ET_AR, ET-1-induced stress-fiber formation was inhibited by preincubation of CHO-SerET_AR with Y-27632 (Fig. 4C) but was not affected by preincubation with U73122 or microinjection of $G_{13}G225A$ (Fig. 4, E and F). Notably, unlike CHO-ET_AR, it was inhibited by microinjection of $G_{12}G228A$ (Fig. 4D).

ET-1 induced stress-fiber formation in CHO-ET_AR $\Delta 385$, in which coupling of the receptor with G_q but not G_s was retained (Fig. 5B). Like CHO-ET_AR, ET-1–induced stress-fiber formation was inhibited by preincubation of CHO-ET_AR $\Delta 385$ with Y-27632 (Fig. 5C) but was not affected by microinjection of G₁₂G228A or G₁₃G225A (Fig. 5, E-G). Notably, unlike CHO-ET_AR, it was inhibited by preincubation with U73122 (Fig. 5D).

Discussion

 $^{125}\mbox{I-ET-1}$ binding assays on intact CHO cells expressing the wild-type or truncated $\mbox{ET}_{A}\mbox{Rs}$ yielded $K_{\rm d}$ and $B_{\rm max}$ values within similar ranges (Table 1). These results were consistent with previous data (Hashido et al., 1993) and suggest that truncation of the receptor is not essential for cell surface expression and ligand binding of $\mbox{ET}_{A}\mbox{R}$. High affinity binding of ET-1 by the mutant receptors is a good indication that the overall structure of the receptor is unchanged by truncation as described earlier (Hashido et al., 1993).

As reported previously (Horstmeyer et al., 1996), with Ser ${\rm ET_AR}$ in which a cluster of five cysteine residues in the

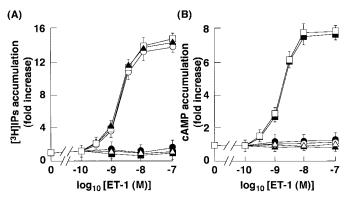


Fig. 2. Effects of ET-1 on IP (A) or cAMP (B) accumulation in CHO cells expressing wild-type or mutant ET_ARs. Formation of total IPs or cAMP after stimulation with varying concentrations of ET-1 in CHO-ET_AR (□), CHO-ET_AR∆388 (closed triangle), CHO-ET_AR∆385 (○), CHO-ET_AR∆382 (♠), and CHO-SerET_AR (■). A, cells that had been incubated with myo-[³H]inositol for 18 h were stimulated by various concentrations of ET-1 for 30 min. B, cells that were stimulated by various concentrations of ET-1 for 10 min in the presence of 3-isobutyl-1-methylxanthine. Total IPs and cAMP in the cell extract were measured as described under Materials and Methods. Values are expressed as -fold increases above basal values. Each data point represents mean \pm S.E.M. of five experiments.

cytoplasmic tail as potential palmitoylation sites were substituted with serine, ET-1 failed to stimulate formation of IPs (Fig. 2A). In the present study, we extended this finding using truncated $ET_{A}Rs$. The truncated $ET_{A}Rs$ holding Cys^{385} (CHO-ET_{A}R $\Delta 385$ and CHO-ET_{A}R $\Delta 388$) retained the ability to stimulate IP formation, whereas those lacking Cys^{385} (CHO-ET_{A}R $\Delta 383$ and CHO-ET_{A}R $\Delta 382$) lost such ability (Fig. 2A). These results taken together strongly indicate that Cys^{385} in $ET_{A}R$ is critical for coupling of $ET_{A}R$ with G_{q} and that the cytoplasmic tail downstream of the palmitoylation site is not necessary for this coupling (Fig. 6).

In the present study, ET-1 stimulated adenylyl cyclase in CHO-SerET_AR, which lacked potential palmitoylation sites but retained the cytoplasmic tail (Fig. 2B). These results are consistent with a previous report (Horstmeyer et al., 1996). In contrast, ET-1 failed to stimulate adenylyl cyclase in all truncated ET_ARs lacking the cytoplasmic tail, regardless of the absence or presence of palmitoylation sites of ET_AR (Fig. 2B). These results, taken together, strongly demonstrate that the cytoplasmic tail of ET_AR is critical for coupling with G_s, although it is not necessary for coupling with G_q (Fig. 6). Moreover, it was previously demonstrated that the second and third intracellular loops of ETAR were major determinants of the selective coupling of $ET_{\rm A}R$ with $G_{\rm s}$ (Takagi et al., 1995). Therefore, we conclude that both the cytoplasmic tail and the second and third intracellular loops of ETAR are necessary for coupling of ET_AR with G_s.

Next, we attempted to identify the subtypes of G proteins that are involved in ET-1-induced stress-fiber formation using CHO-ET_ARΔ385, CHO-SerET_AR, and CHO-ET_AR. Based on sensitivity to Y-27632, the Rho/ROCK pathway plays important roles in ET-1-induced stress-fiber formation in CHO-ET_AR (Fig. 5C) as in NIH 3T3 cells and fibroblasts (Mao et al., 1998; Gohla et al., 1999). ET-1-induced stress-fiber formation in CHO-ET_AR was affected by neither pretreatment with U73122 nor microinjection of G₁₂G228A or G₁₃G225A (Fig. 5F) but was inhibited by combined treatment with U73122 and G₁₂G228A microinjection (Fig. 3D). These results indicate that ET-1-induced stress-fiber formation is mediated via two signaling pathways (i.e., the G_q/PLC- and G₁₂-dependent pathways in CHO-ET_AR) (Fig. 6) and also that only one of the two is sufficient for actin stress-fiber formation. Moreover, the present study indicates that G_s is not involved in ET-1-induced stress-fiber formation, because dibutyryl cAMP failed to induce actin stress-fiber formation in CHO-ET_AR (Fig. 3E).

These conclusions are supported by findings obtained with $SerET_AR$. That is, because $SerET_AR$ does not couple with G_q , which is one of the two signaling pathways necessary for ET-1-induced stress-fiber formation, blockade of another signaling pathway with $G_{12}G228A$ leads to inhibition of actin stress-fiber formation. Furthermore, these results indicate that $SerET_AR$ retains the ability to couple with G_{12} .

In CHO-ET_AR Δ 385, in which coupling of the receptor with G_q but not G_s is retained, ET-1–induced stress-fiber formation was inhibited by U73122 but not $G_{12}G228A$. Based on the conclusion obtained from wild-type ET_AR, these data can be interpreted to mean that because ET_AR Δ 385 lacks coupling with G_{12} , which is one of the two signaling pathways necessary for ET-1–induced actin stress-fiber formation, blockade of another signaling pathway with U73122 leads to inhibition of actin stress-fiber formation. Therefore, these

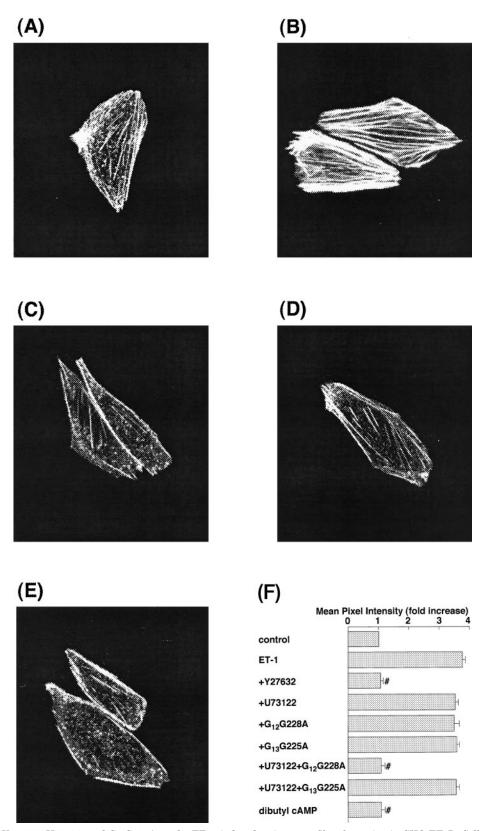


Fig. 3. A-D, effects of Y-27632, U73122, and $G_{12}G228A$ on the ET-1-induced actin stress-fiber formation in CHO-ET_AR. Cells were stimulated with (B) or without (A) 10 nM ET-1. The effects of preincubation with 10 μ M Y27632 (C) and combination treatment of $G_{12}G228A$ microinjection and 5 μ M U73122 preincubation (D) on ET-1-induced stress-fiber formation are shown. Y-27632 and U73122 were added 15 min before stimulation with ET-1. Expression plasmids encoding for $G_{12}G228A$ and $G_{13}G225A$ were microinjected into the cell nuclei 24 h before stimulation with ET-1. E, effects of dibutyryl cAMP on actin stress-fiber formation in CHO-ET_AR. Cells were incubated for 5 min with 10 μ M dibutyryl cAMP alone. Actin stress fibers were visualized as described under *Materials and Methods*. Representative examples of stress fibers in individual cells are shown. F, pixel intensity of images was quantified using NIH Image software. Values are expressed as -fold increases above the values in the absence of ET-1. Each data point represents mean \pm S.E.M. of at least 20 cells.

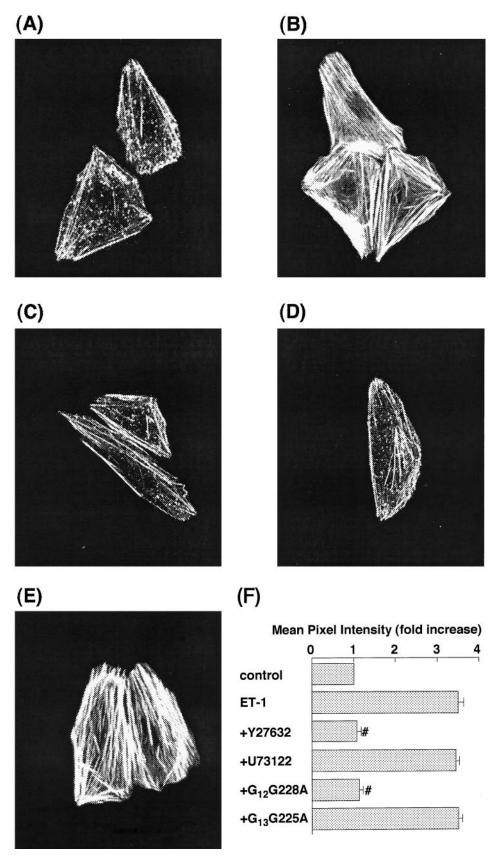
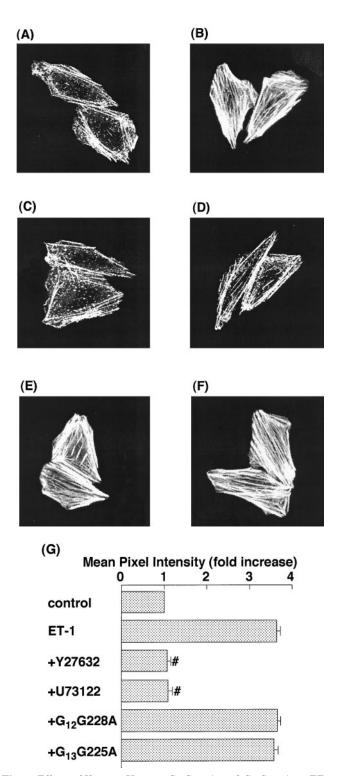



Fig. 4. Effects of Y27632, U73122, $G_{12}G228A$, and $G_{13}G225A$ on ET-1-induced actin stress-fiber formation in CHO-SerET_AR. Cells were stimulated with (B) or without (A) 10 nM ET-1. C, Y-27632 at 10 μ M was added 15 min before stimulation with ET-1. Expression plasmids encoding for $G_{12}G228A$ (D) and $G_{13}G225A$ (E) were microinjected into cell nuclei 24 h before stimulation with ET-1. Actin stress fibers were visualized as described under *Materials and Methods*. Representative examples of stress fibers in individual cells are shown. F, pixel intensity of images was quantified using NIH Image software. Values are expressed as -fold increases above the values in the absence of ET-1. Each data point represents mean \pm S.E.M. of at least 20 cells.

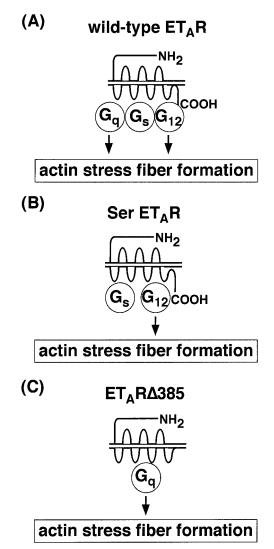


Fig. 5. Effects of Y27632, U73122, $G_{12}G228A$, and $G_{13}G225A$ on ET-1–induced actin stress-fiber formation in CHO-ET_ARΔ385. Cells were stimulated with (B) or without (A) 10 nM ET-1. Y-27632 at 10 μM (C) and U73122 at 5 μM (D) were added 15 min before stimulation with ET-1. Expression plasmids encoding $G_{12}G228A$ (E) and $G_{13}G225A$ (F) were microinjected into the cell nuclei 24 h before stimulation with ET-1. Actin stress fibers were visualized with fluorescein rhodamine-phalloidin as described under *Materials and Methods*. Representative examples of stress fibers in individual cells are shown. G, pixel intensity of images was quantified using NIH Image software. Values are expressed as -fold increases above the values in the absence of ET-1. Each data point represents mean \pm S.E.M. of at least 20 cells.

results indicate that $ET_AR\Delta 385$ has lost the ability to couple with $G_{12},$ although it can still induce stress-fiber formation via the G_α -dependent pathway.

Finally, we deduced the structural determinant for coupling of ET_AR with G_{12} based on data from experiments using mutated ET_ARs . That is, loss of coupling of $ET_AR\Delta 385$ with G_{12} and retention of coupling of $SerET_AR$ with G_{12} clearly show that the cytoplasmic tail downstream of Cys^{385} but not the palmitoylation site of ET_AR is essential for coupling with G_{12} .

In conclusion, the present study showed that 1) the cytoplasmic tail downstream of the palmitoylation site of ET_AR is essential for coupling with $G_{\rm s}$ and $G_{12},$ 2) Cys^{385} of ET_AR is critical for coupling with $G_{\rm q},$ and 3) the signal for ET-1–induced stress-fiber formation is mediated via the $G_{\rm q}/PLC$ -and G_{12} -dependent pathway to Rho/ROCK system in CHO-ET_AR. Thus, the presence of one of the two pathways is sufficient for stress-fiber formation.

Fig. 6. Schematic representation of signaling pathways for actin stress-fiber formation activated by ET-1 in CHO-ET_AR (A), CHO-SerET_AR (B), and CHO-ET_ARΔ385 (C). Wild-type ET_AR couple to G_q , G_s , and G_{12} , whereas SerET_AR or ET_ARΔ385 couple to G_s/G_{12} or G_q , respectively. Actin stress-fiber formation is stimulated by ET-1 via G_q - and G_{12} -dependent pathways in CHO-ET_AR, whereas via G_{12} - or G_q -dependent pathway in CHO-SerET_AR or CHO-ET_ARΔ385, respectively. See *Results* and *Discussion* for details.

Acknowledgments

We thank Mitsubishi Pharma Corporation for the kind donation of Y-27632.

References

- Arai H, Hori S, Aramori I, Ohkubo H, and Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. *Nature (Lond)* 348:730–732.
- Aramori I and Nakanishi S (1992) Coupling of two endothelin receptor subtypes to differing signal transduction in transfected Chinese hamster ovary cells. J Biol Chem $\bf 267:12468-12474.$
- Barnett DK, Clayton MK, Kimura J, and Bavister BD (1997) Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. *Mol Reprod Dev* 48:227–237.
- Buhl AM, Johnson NL, Dhanasekaran N, and Johnson GL (1995) G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. $J\ Biol\ Chem\ 270:24631-24634.$
- Gohla A, Offermanns S, Wilkie TM, and Schultz G (1999) Differential involvement of Galpha12 and Galpha13 in receptor-mediated stress fiber formation. J Biol Chem 274:17901–17907.
- Gohla A, Schultz G, and Offermanns S (2000) Role of G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circ Res 87:221–227.
- Hashido K, Adachi M, Gamou T, Watanabe T, Furuichi Y, and Miyamoto C (1993) Identification of specific intracellular domains of the human ETA receptor required for ligand binding and signal transduction. *Cell Mol Biol Res* **39**:3–12.
- Horstmeyer A, Cramer H, Sauer T, Muller-Esterl W, and Schroeder C (1996) Palmitoylation of endothelin receptor A. Differential modulation of signal transduction activity by post-translational modification. *J Biol Chem* **271**:20811–20819.
- Malek RL, Toman RE, Edsall LC, Wong S, Chiu J, Letterle CA, Van Brocklyn JR, Milstien S, Spiegel S, Lee MH. (2001) Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphimgosine-1-phosphate receptors. J Biol Chem 276:5692–5699.

- Mao J, Yuan H, Xie W, Simon MI, and Wu D (1998) Specific involvement of G proteins in regulation of serum response factor-mediated gene transcription by different receptors. J Biol Chem 273:27118–27123.
- Masaki T (1993) Endothelin: homeostatic and compensatory actions in the circulatory and endocrine systems. Endocr Rev 14:256–268.
- Okamoto Y, Ninomiya H, Tanioka M, Sakamoto A, Miwa S, and Masaki T (1997) Palmitoylation of human endothelin_B. *J Biol Chem* **272**:21589–21596.
- Okazawa M, Shiraki T, Ninomiya H, Kobayashi S, and Masaki T (1998) Endothelininduced apoptosis of A375 human melanoma cells. *J Biol Chem* **273**:12584–12592.
- Sakamoto A, Yanagisawa M, Sawamura T, Enoki T, Ohtani T, Sakurai T, Nakao K, Toyo-oka T and Masaki T (1993) Distinct subdomains of human endothelin receptors determine their selectivity to endothelin A-selective antagonist and endothelin B-selective agonists. J Biol Chem 268:8547–8553.
- Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, and Masaki T (1990) Cloning of cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. *Nature (Lond)* **348:**732–735.
- Takagi Y, Ninomiya H, Sakamoto A, Miwa S, and Masaki T (1995) Structural basis of G protein specificity of human endothelin receptors. A study with endothelin A/B chimeras. J Biol Chem 270:10072–10078.
- van de Westerlo E, Yang J, Logsdon C, and Williams JA (1995) Down-regulation of the G-proteins Gq alpha and G11 alpha by transfected human M3 muscarinic acetylcholine receptors in Chinese hamster ovary cells is independent of receptor down-regulation. Biochem J 310:559-563.
- Yanagisawa M, Kurihara S, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, and Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. *Nature (Lond)* 332:411–415.

Address correspondence to: Yoshifumi Kawanabe, M.D., Department of Neurosurgery, Kyoto University Faculty of Medicine, 54 Shougoin-Kawaharachou, Sakyo-ku, Kyoto 6060-8507, Japan. E-mail: kawanabe@kuhp.kyoto-u.ac.jp